全国免费服务热线 0571-82572903 15088784398

行业新闻

高清透雾摄像机图像去雾技术技术解析

来源:原创 编辑:admin 时间:2014-11-11 11:44
分享到:
      高清透雾摄像机图像去雾技术:

如今不认不知无人不晓的雾霾已经成为人们心中的痛处,对于生活在雾霾比较严重的地方的人们来说,给生活带来的影响是全方位的。

     基于图像处理的图像增强技术应用:

典型的雾天图像增强方法有灰度直方图变换方法、频率域分析方法和基于色感一致性的Retinex算法等。

灰度直方图变换方法是把有雾图像的直方图变换为均匀分布的形式,从而增加像素灰度值的动态范围达到增强雾天图像整体对比度的效果。
 

    频率域中小波分析算法是采用基于小波分析的多尺度图像增强算法,其主要思想是由于雾的能量主要集中在图像的低频部分,对高频部分影响较小,所以在此基础上对图像的高频和低频分别进行增强或削弱以达到图像清晰的目的。值得一提的是,目前有一种在小波变换基础上发展起来的新的多尺度分析方法-曲波分析算法,特别适合于各向异性奇异性特征的信号处理,很好地弥补小波变换在图像的曲线边缘增强方面的局限性,能利用曲波变换的优势,采用基于曲波的消失点检测对雾天图像进行自动去雾处理。

     色感一致性或称为色彩恒常理论是基于人类视觉特点提出一种理论,认为人的视觉系统能够忽略环境中光照的变化而获得稳定的颜色感知。Retinex算法是建立在色彩恒常理论基础上一种图像增强方法,该算法通过视觉系统颜色不变性的特点,加强因为雾的干扰而被弱化的光照,从而达到对图像增强的目的。

     基于天气物理模型的图像复原方法:

    (1)多幅图像合成场景深度模型的方法

    早期的复原算法是利用场景深度求解大气散射方程从而获得清晰图像,随后便出现了利用不同天气条件下同一场景的多幅图像合成场景深度模型的方法,均取得了较好的效果,但受客观条件的限制,估测的场景深度往往不够准确,同时由于缺乏足够先验条件加以约束,容易导致复原的结果与实际不符。

    (2)光的极化角度分析与偏微分方程

    后来,人们从光的极化角度对雾进行分析,利用同一场景下的多幅图像把被雾散射的光线分离为水平极化光和垂直极化光,设计相应的滤波器消除雾对光线的影响,达到去雾的目的,这种方法去雾效果明显,图像失真小,但是计算量过大,难以应用于实际。此外,偏微分方程在雾天图像复原领域中也有广泛的应用,主要方法是在大气散射模型的基础上,建立雾化图像对应的梯度场,然后根据图像景深与梯度的关系构造偏微分方程并求解获得清晰的图像,该方法能够实现单幅图像的盲去雾,但是构造和求解偏微分方程的过程繁琐,同样难以实现。


 (3)单幅降质图像雾气浓度分析

近年来,众多研究者致力于如何针对单幅降质图像按照图中雾气浓度的变化达到彻底去雾的效果:通过统计发现,无雾图像相对于有雾图像必定具有较高的对比度,从而我们可以利用最大化复原图像的局部对比度来达到去雾的目的,该方法能极大的增强图像的对比度,但是容易导致图像的颜色失真,并且在场景深度不连续的地方会产生光圈效应,.

(4)光线的反射估算方法

由于物体表面的反射率是固定不变的,与其表面的光照强度无关,因此也可以利用景物对光线的反射估算光线的透射程度达到去雾的目的,但是该算法要求图像局部存在不同的色彩,因此当雾的浓度很大、图像接近白色时,就无法估计得到相应参数,导致去雾失败。而且这种方法只对彩色图像有效,并且计算量较大.

(5)基于暗通道先验的单幅图像去雾算法


 基于暗通道先验的单幅图像去雾算法是在2009年被提出的一种简单有效的图像复原方法,该方法建立在一种自然界中普遍存在的暗通道先验的基础上,由于晴天拍摄的户外图像中总存在一些“暗点”,这些“暗点”至少有一个颜色通道的值很低,所以当图像受到雾的干扰时,这些原本很低的值由于受到大气散射光的影响而大幅升高,利用这些点就可以估算出拍摄场景中雾的浓度,并复原出清晰的无雾图像。但这种方法只能粗略估算出图像大气光的分布,需要结合软抠图或双边滤波算法对透射率进行优化.

采用数字图像处理技术对图像进行处理的方法有很多种,归结起来,仍然是传统的两类:一类图像增强,另一类是图像复原。图像增强方法是从图像呈现的低亮度和低对比度的特征考虑,按照特定需要突出图像中的某些信息,削弱或去除某些不需要的信息来完成的;图像复原是从基于物理模型的天气退化图像复原方法,从物理成因的角度对大气散射作用进行建模分析,实现场景复原。在复原过程中,一般先利用各种先验知识估计模型中的参数,最后求解方程从而计算出清晰的图像。两种方法相较,基于复原去雾算法从原理上实现去雾,对雾的估计更准确,能够真实地还原雾前的清晰图像,针对性强,得到的去雾效果自然,一般不会有信息的损失。

在线客服
售前咨询
  • 点击这里给我发消息
售后服务
  • 点击这里给我发消息